A first eigenvalue estimate for embedded hypersurfaces in positive Ricci curvature manifolds
Abstract
Let $\Sigma^n$ be a compact, embedded, oriented hypersurface in a compact oriented Riemannian manifold $N^{n+1}$ with the second fundamental form $h$. Let $H={\rm tr}_{g_{\Sigma}} h$ and $S=|h|^2$ be the mean curvature and squared length of the second fundamental form $h$ of $\Sigma$, respectively. If the Ricci curvature of $N^{}$ is bounded from below by a positive constant $k>0$ and the sectional curvature of $N^{}$ is bounded from above by a positive constant $K>0$, then the first nonzero eigenvalue of the Laplacian on $\Sigma$ has a lower bound $$\lambda_1(\Sigma)\geq \frac {k}{2}- \frac{H_{\Sigma}}{2} \left( nK+\frac{2\sqrt{S_{\Sigma}K}}{\arctan(\sqrt{K})}+2n\sqrt{S_{\Sigma}} +\frac{n}{n+1}H_{\Sigma} \right).$$ where $H_{\Sigma}=\max_{\Sigma}|H|$ and $S_{\Sigma}=\max_{\Sigma}S$. It extends the result of Choi and Wang [J. Diff. Geom. \textbf{18} (1983), 559--562.] to non-minimal case.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2023
- DOI:
- arXiv:
- arXiv:2308.02803
- Bibcode:
- 2023arXiv230802803L
- Keywords:
-
- Mathematics - Differential Geometry;
- 58C40;
- 58J50
- E-Print:
- 10 pages, any comments are welcome