Exponential stability of damped Euler-Bernoulli beam controlled by boundary springs and dampers
Abstract
In this paper, the vibration model of an elastic beam, governed by the damped Euler-Bernoulli equation $\rho(x)u_{tt}+\mu(x)u_{t}$$+\left(r(x)u_{xx}\right)_{xx}=0$, subject to the clamped boundary conditions $u(0,t)=u_x(0,t)=0$ at $x=0$, and the boundary conditions $\left(-r(x)u_{xx}\right)_{x=\ell}=k_r u_x(\ell,t)+k_a u_{xt}(\ell,t)$, $\left(-\left(r(x)u_{xx}\right)_{x}\right )_{x=\ell}$$=- k_d u(\ell,t)-k_v u_{t}(\ell,t)$ at $x=\ell$, is analyzed. The boundary conditions at $x=\ell$ correspond to linear combinations of damping moments caused by rotation and angular velocity and also, of forces caused by displacement and velocity, respectively. The system stability analysis based on well-known Lyapunov approach is developed. Under the natural assumptions guaranteeing the existence of a regular weak solution, uniform exponential decay estimate for the energy of the system is derived. The decay rate constant in this estimate depends only on the physical and geometric parameters of the beam, including the viscous external damping coefficient $\mu(x) \ge 0$, and the boundary springs $k_r,k_d \ge 0$ and dampers $k_a,k_v \ge 0$. Some numerical examples are given to illustrate the role of the damping coefficient and the boundary dampers.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2023
- DOI:
- arXiv:
- arXiv:2307.06170
- Bibcode:
- 2023arXiv230706170B
- Keywords:
-
- Mathematics - Analysis of PDEs;
- Mathematics - Numerical Analysis;
- Mathematics - Optimization and Control
- E-Print:
- 21 pages 10 figures