A Serre spectral sequence for the moduli space of tropical curves
Abstract
We construct, for all $g\geq 2$ and $n\geq 0$, a spectral sequence of rational $S_n$-representations which computes the $S_n$-equivariant reduced rational cohomology of the tropical moduli spaces of curves $\Delta_{g,n}$ in terms of compactly supported cohomology groups of configuration spaces of $n$ points on graphs of genus $g$. Using the canonical $S_n$-equivariant isomorphisms $\widetilde{H}^{i-1}(\Delta_{g,n};\mathbb{Q}) \cong W_0 H^i_c(\mathcal{M}_{g,n};\mathbb{Q})$, we calculate the weight $0$, compactly supported rational cohomology of the moduli spaces $\mathcal{M}_{g,n}$ in the range $g=3$ and $n\leq 9$, with partial computations available for $n\leq 13$.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2023
- DOI:
- 10.48550/arXiv.2307.01960
- arXiv:
- arXiv:2307.01960
- Bibcode:
- 2023arXiv230701960B
- Keywords:
-
- Mathematics - Algebraic Geometry;
- Mathematics - Algebraic Topology;
- Mathematics - Combinatorics;
- 14H10;
- 14Q05;
- 14T20;
- 55N30;
- 55R80;
- 55T10
- E-Print:
- 24 pages plus appendix