End-to-end Autonomous Driving: Challenges and Frontiers
Abstract
The autonomous driving community has witnessed a rapid growth in approaches that embrace an end-to-end algorithm framework, utilizing raw sensor input to generate vehicle motion plans, instead of concentrating on individual tasks such as detection and motion prediction. End-to-end systems, in comparison to modular pipelines, benefit from joint feature optimization for perception and planning. This field has flourished due to the availability of large-scale datasets, closed-loop evaluation, and the increasing need for autonomous driving algorithms to perform effectively in challenging scenarios. In this survey, we provide a comprehensive analysis of more than 270 papers, covering the motivation, roadmap, methodology, challenges, and future trends in end-to-end autonomous driving. We delve into several critical challenges, including multi-modality, interpretability, causal confusion, robustness, and world models, amongst others. Additionally, we discuss current advancements in foundation models and visual pre-training, as well as how to incorporate these techniques within the end-to-end driving framework. we maintain an active repository that contains up-to-date literature and open-source projects at https://github.com/OpenDriveLab/End-to-end-Autonomous-Driving.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2023
- DOI:
- arXiv:
- arXiv:2306.16927
- Bibcode:
- 2023arXiv230616927C
- Keywords:
-
- Computer Science - Robotics;
- Computer Science - Artificial Intelligence;
- Computer Science - Computer Vision and Pattern Recognition;
- Computer Science - Machine Learning
- E-Print:
- Accepted by IEEE TPAMI