Massive Black Hole Binaries as LISA Precursors in the Roman High Latitude Time Domain Survey
Abstract
With its capacity to observe $\sim 10^{5-6}$ faint active galactic nuclei (AGN) out to redshift $z\approx 6$, Roman is poised to reveal a population of $10^{4-6}\, {\rm M_\odot}$ black holes during an epoch of vigorous galaxy assembly. By measuring the light curves of a subset of these AGN and looking for periodicity, Roman can identify several hundred massive black hole binaries (MBHBs) with 5-12 day orbital periods, which emit copious gravitational radiation and will inevitably merge on timescales of $10^{3-5}$ years. During the last few months of their merger, such binaries are observable with the Laser Interferometer Space Antenna (LISA), a joint ESA/NASA gravitational wave mission set to launch in the mid-2030s. Roman can thus find LISA precursors, provide uniquely robust constraints on the LISA source population, help identify the host galaxies of LISA mergers, and unlock the potential of multi-messenger astrophysics with massive black hole binaries.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2023
- DOI:
- arXiv:
- arXiv:2306.14990
- Bibcode:
- 2023arXiv230614990H
- Keywords:
-
- Astrophysics - High Energy Astrophysical Phenomena;
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- Astrophysics - Astrophysics of Galaxies;
- General Relativity and Quantum Cosmology;
- High Energy Physics - Theory
- E-Print:
- White Paper for the Nancy Grace Roman Space Telescope's Core Community Surveys (https://roman.gsfc.nasa.gov/science/ccs_white_papers.html)