On Ruzsa's discrete Brunn-Minkowski conjecture
Abstract
We prove a conjecture by Ruzsa from 2006 on a discrete version of the Brunn-Minkowski inequality, stating that for any $A,B\subset\mathbb{Z}^k$ and $\epsilon>0$ with $B$ not contained in $n_{k,\epsilon}$ parallel hyperplanes we have $|A+B|^{1/k}\geq |A|^{1/k}+\left(1-\epsilon\right)|B|^{1/k}$.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2023
- DOI:
- arXiv:
- arXiv:2306.13225
- Bibcode:
- 2023arXiv230613225V
- Keywords:
-
- Mathematics - Combinatorics;
- Mathematics - Metric Geometry;
- Mathematics - Number Theory;
- 11P70;
- 52A40;
- 49Q20;
- 52A27
- E-Print:
- 6 pages