Global-Local Processing in Convolutional Neural Networks
Abstract
Convolutional Neural Networks (CNNs) have achieved outstanding performance on image processing challenges. Actually, CNNs imitate the typically developed human brain structures at the micro-level (Artificial neurons). At the same time, they distance themselves from imitating natural visual perception in humans at the macro architectures (high-level cognition). Recently it has been investigated that CNNs are highly biased toward local features and fail to detect the global aspects of their input. Nevertheless, the literature offers limited clues on this problem. To this end, we propose a simple yet effective solution inspired by the unconscious behavior of the human pupil. We devise a simple module called Global Advantage Stream (GAS) to learn and capture the holistic features of input samples (i.e., the global features). Then, the GAS features were combined with a CNN network as a plug-and-play component called the Global/Local Processing (GLP) model. The experimental results confirm that this stream improves the accuracy with an insignificant additional computational/temporal load and makes the network more robust to adversarial attacks. Furthermore, investigating the interpretation of the model shows that it learns a more holistic representation similar to the perceptual system of healthy humans
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2023
- DOI:
- arXiv:
- arXiv:2306.08336
- Bibcode:
- 2023arXiv230608336R
- Keywords:
-
- Computer Science - Computer Vision and Pattern Recognition;
- Computer Science - Artificial Intelligence