Secure Integrated Sensing and Communication Exploiting Target Location Distribution
Abstract
In this paper, we study a secure integrated sensing and communication (ISAC) system where one multi-antenna base station (BS) simultaneously serves a downlink communication user and senses the location of a target that may potentially serve as an eavesdropper via its reflected echo signals. Specifically, the location information of the target is unknown and random, while its a priori distribution is available for exploitation. First, to characterize the sensing performance, we derive the posterior Cramér-Rao bound (PCRB) which is a lower bound of the mean squared error (MSE) for target sensing exploiting prior distribution. Due to the intractability of the PCRB expression, we further derive a novel approximate upper bound of it which has a closed-form expression. Next, under an artificial noise (AN) based beamforming structure at the BS to alleviate information eavesdropping and enhance the target's reflected signal power for sensing, we formulate a transmit beamforming optimization problem to maximize the worst-case secrecy rate among all possible target (eavesdropper) locations, under a sensing accuracy threshold characterized by an upper bound on the PCRB. Despite the non-convexity of the formulated problem, we propose a two-stage approach to obtain its optimal solution by leveraging the semi-definite relaxation (SDR) technique. Numerical results validate the effectiveness of our proposed transmit beamforming design and demonstrate the non-trivial trade-off between secrecy performance and sensing performance in secure ISAC systems.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2023
- DOI:
- arXiv:
- arXiv:2306.04543
- Bibcode:
- 2023arXiv230604543H
- Keywords:
-
- Computer Science - Information Theory;
- Electrical Engineering and Systems Science - Signal Processing
- E-Print:
- submitted for possible publication