Mickelsson algebras via Hasse diagrams
Abstract
Let $\mathcal{A}$ be an associative algebra containing either classical or quantum universal enveloping algebra of a semi-simple complex Lie algebra $\mathfrak{g}$. We present a construction of the Mickelsson algebra $Z(\mathcal{A},\mathfrak{g})$ relative to the left ideal in $\mathcal{A}$ generated by positive root vectors. Our method employs a calculus on Hasse diagrams associated with classical or quantum $\mathfrak{g}$-modules. We give an explicit expression for a PBW basis in $Z(\mathcal{A},\mathfrak{g})$ in the case when $\mathcal{A}=U(\mathfrak{a})$ of a finite-dimensional Lie algebra $\mathfrak{a}\supset \mathfrak{g}$. For $\mathcal{A}=U_q(\mathfrak{a})$ and $\mathfrak{g}$ the commutant of a Levi subalgebra in $\mathfrak{a}$, we construct a PBW basis in terms of quantum Lax operators, upon extension of the ground ring of scalars to $\mathbb{C}[[\hbar]]$.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2023
- DOI:
- arXiv:
- arXiv:2306.01592
- Bibcode:
- 2023arXiv230601592M
- Keywords:
-
- Mathematics - Quantum Algebra;
- 17B10;
- 17B37
- E-Print:
- 20 pages, no figures. Minor changes on p.18