Methodological considerations for novel approaches to covariate-adjusted indirect treatment comparisons
Abstract
We examine four important considerations in the development of covariate adjustment methodologies for indirect treatment comparisons. Firstly, we consider potential advantages of weighting versus outcome modeling, placing focus on bias-robustness. Secondly, we outline why model-based extrapolation may be required and useful, in the specific context of indirect treatment comparisons with limited overlap. Thirdly, we describe challenges for covariate adjustment based on data-adaptive outcome modeling. Finally, we offer further perspectives on the promise of doubly-robust covariate adjustment frameworks.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2023
- DOI:
- arXiv:
- arXiv:2305.08651
- Bibcode:
- 2023arXiv230508651R
- Keywords:
-
- Statistics - Methodology
- E-Print:
- 8 pages, discussion paper, counter-response to Vo (2023) accepted by Research Synthesis Methods