A Nordhaus-Gaddum type problem for the normalized Laplacian spectrum and graph Cheeger constant
Abstract
For a graph $G$ on $n$ vertices with normalized Laplacian eigenvalues $0 = \lambda_1(G) \leq \lambda_2(G) \leq \cdots \leq \lambda_n(G)$ and graph complement $G^c$, we prove that \begin{equation*} \max\{\lambda_2(G),\lambda_2(G^c)\}\geq \frac{2}{n^2}. \end{equation*} We do this by way of lower bounding $\max\{i(G), i(G^c)\}$ and $\max\{h(G), h(G^c)\}$ where $i(G)$ and $h(G)$ denote the isoperimetric number and Cheeger constant of $G$, respectively.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2023
- DOI:
- arXiv:
- arXiv:2304.01979
- Bibcode:
- 2023arXiv230401979N
- Keywords:
-
- Mathematics - Combinatorics;
- 05C50;
- 15A18