Revisiting Area Convexity: Faster Box-Simplex Games and Spectrahedral Generalizations
Abstract
We investigate different aspects of area convexity [Sherman '17], a mysterious tool introduced to tackle optimization problems under the challenging $\ell_\infty$ geometry. We develop a deeper understanding of its relationship with more conventional analyses of extragradient methods [Nemirovski '04, Nesterov '07]. We also give improved solvers for the subproblems required by variants of the [Sherman '17] algorithm, designed through the lens of relative smoothness [Bauschke-Bolte-Teboulle '17, Lu-Freund-Nesterov '18]. Leveraging these new tools, we give a state-of-the-art first-order algorithm for solving box-simplex games (a primal-dual formulation of $\ell_\infty$ regression) in a $d \times n$ matrix with bounded rows, using $O(\log d \cdot \epsilon^{-1})$ matrix-vector queries. As a consequence, we obtain improved complexities for approximate maximum flow, optimal transport, min-mean-cycle, and other basic combinatorial optimization problems. We also develop a near-linear time algorithm for a matrix generalization of box-simplex games, capturing a family of problems closely related to semidefinite programs recently used as subroutines in robust statistics and numerical linear algebra.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2023
- DOI:
- arXiv:
- arXiv:2303.15627
- Bibcode:
- 2023arXiv230315627J
- Keywords:
-
- Mathematics - Optimization and Control
- E-Print:
- v2 polishes exposition