Isometries and isometric embeddings of Wasserstein spaces over the Heisenberg group
Abstract
Our purpose in this paper is to study isometries and isometric embeddings of the $p$-Wasserstein space $\mathcal{W}_p(\mathbb{H}^n)$ over the Heisenberg group $\mathbb{H}^n$ for all $p>1$ and for all $n\geq 1$. First, we create a link between optimal transport maps in the Euclidean space $\mathbb{R}^{2n}$ and the Heisenberg group $\mathbb{H}^n$. Then we use this link to understand isometric embeddings of $\mathbb{R}$ and $\mathbb{R}_+$ into $\mathcal{W}_p(\mathbb{H}^n)$ for $p>1$. That is, we characterize complete geodesics and geodesic rays in the Wasserstein space. Using these results we determine the metric rank of $\mathcal{W}_p(\mathbb{H}^n)$. Namely, we show that $\mathbb{R}^k$ can be embedded isometrically into $\mathcal{W}_p(\mathbb{H}^n)$ for $p>1$ if and only if $k\leq n$. As a consequence, we conclude that $\mathcal{W}_p(\mathbb{R}^k)$ and $\mathcal{W}_p(\mathbb{H}^k)$ can be embedded isometrically into $\mathcal{W}_p(\mathbb{H}^n)$ if and only if $k\leq n$. In the second part of the paper, we study the isometry group of $\mathcal{W}_p(\mathbb{H}^n)$ for $p>1$. We find that these spaces are all isometrically rigid meaning that for every isometry $\Phi:\mathcal{W}_p(\mathbb{H}^n)\to\mathcal{W}_p(\mathbb{H}^n)$ there exists a $\psi:\mathbb{H}^n\to\mathbb{H}^n$ such that $\Phi=\psi_{\#}$.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2023
- DOI:
- arXiv:
- arXiv:2303.15095
- Bibcode:
- 2023arXiv230315095B
- Keywords:
-
- Mathematics - Metric Geometry;
- Mathematical Physics;
- Mathematics - Functional Analysis;
- 46E27;
- 49Q22;
- 54E40
- E-Print:
- 29 pages. v2: a part of this preprint discussing the isometric rigidity of the 1-Wasserstein space has been moved to the preprint "Isometric rigidity of the Wasserstein space $\mathcal{W}_1(\mathbb{G})$ over Carnot groups" by the same authors + minor improvements. v3: proof of Proposition 3.3 revised and streamlined