Almost everywhere convergence of Bochner--Riesz means for the twisted Laplacian
Abstract
Let $\mathcal L$ denote the twisted Laplacian in $\mathbb C^d$. We study almost everywhere convergence of the Bochner--Riesz mean $S^\delta_{t}(\mathcal L) f$ of $f\in L^p(\mathbb C^d)$ as $t\to \infty$, which is an expansion of $f$ in the special Hermite functions. For $2\le p\le \infty$, we obtain the sharp range of the summability indices $\delta$ for which the convergence of $S^\delta_{t}(\mathcal L) f$ holds for all $f\in L^p(\mathbb C^d)$.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2023
- DOI:
- arXiv:
- arXiv:2303.02679
- Bibcode:
- 2023arXiv230302679J
- Keywords:
-
- Mathematics - Classical Analysis and ODEs;
- 42B15;
- 42B25;
- 42C10
- E-Print:
- 23 pages