Sub-Bergman Hilbert spaces on the unit disk III
Abstract
For a bounded analytic function $\varphi$ on the unit disk $\D$ with $\|\varphi\|_\infty\le1$ we consider the defect operators $D_\varphi$ and $D_{\overline\varphi}$ of the Toeplitz operators $T_\varphi$ and $T_{\overline\varphi}$, respectively, on the weighted Bergman space $A^2_\alpha$. The ranges of $D_\varphi$ and $D_{\overline\varphi}$, written as $H(\varphi)$ and $H(\overline\varphi)$ and equipped with appropriate inner products, are called sub-Bergman spaces. We prove the following three results in the paper: for $-1<\alpha\le0$ the space $H(\varphi)$ has a complete Nevanlinna-Pick kernel if and only if $\varphi$ is a Möbius map; for $\alpha>-1$ we have $H(\varphi)=H(\overline\varphi)=A^2_{\alpha-1}$ if and only if the defect operators $D_\varphi$ and $D_{\overline\varphi}$ are compact; and for $\alpha>-1$ we have $D^2_\varphi(A^2_\alpha)= D^2_{\overline\varphi}(A^2_\alpha)=A^2_{\alpha-2}$ if and only if $\varphi$ is a finite Blaschke product. In some sense our restrictions on $\alpha$ here are best possible.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2023
- DOI:
- arXiv:
- arXiv:2302.01980
- Bibcode:
- 2023arXiv230201980L
- Keywords:
-
- Mathematics - Complex Variables;
- Mathematics - Functional Analysis;
- 30H15;
- 30H10;
- 30H05;
- 47B35
- E-Print:
- 19 pages