Geometry of Selberg's bisectors in the symmetric space $SL(n,\mathbb{R})/SO(n,\mathbb{R})$
Abstract
We discussed some properties of a family of symmetric spaces, namely $\mathcal{P}(n):=SL(n,\mathbb{R})/SO(n,\mathbb{R})$, where we replace the Riemannian metric on $\mathcal{P}(n)$ with a premetric suggested by Selberg. These properties are generalizations of properties on the hyperbolic spaces $\mathbf{H}^n$ related to Poincaré's fundamental polyhedron theorem.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2023
- DOI:
- 10.48550/arXiv.2302.00643
- arXiv:
- arXiv:2302.00643
- Bibcode:
- 2023arXiv230200643D
- Keywords:
-
- Mathematics - Group Theory;
- Mathematics - Differential Geometry;
- 20F65 (Primary) 22E40;
- 53C35 (Secondary)