Boundedness of Fourier integral operators on classical function spaces
Abstract
We investigate the global boundedness of Fourier integral operators with amplitudes in the general Hörmander classes $S^{m}_{\rho, \delta}(\mathbb{R}^n)$, $\rho, \delta\in [0,1]$ and non-degenerate phase functions of arbitrary rank $\kappa\in \{0,1,\dots, n-1\}$ on Besov-Lipschitz $B^{s}_{p,q}(\mathbb{R}^n)$ and Triebel-Lizorkin $F^{s}_{p,q}(\mathbb{R}^n)$ of order $s$ and $0<p\leq\infty$, $0<q\leq\infty$. The results that are obtained are all up to the end-point and sharp and are also applied to the regularity of Klein-Gordon-type oscillatory integrals in the aforementioned function spaces.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2023
- DOI:
- arXiv:
- arXiv:2302.00312
- Bibcode:
- 2023arXiv230200312I
- Keywords:
-
- Mathematics - Analysis of PDEs;
- 35S30;
- 42B35;
- 42B37 (Primary) 42B20 (Secondary)
- E-Print:
- Journal of Functional Analysis, 2023