Tight infinite matrices
Abstract
We give a simple proof of a recent result of Gollin and Joó: if a possibly infinite system of homogeneous linear equations $A\vec{x} = \vec{0}$, where $A = (a_{i, j})$ is an $I \times J$ matrix, has only the trivial solution, then there exists an injection $\phi: J \to I$, such that $a_{\phi(j), j} \neq 0$ for all $j \in J$.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2023
- DOI:
- arXiv:
- arXiv:2301.10312
- Bibcode:
- 2023arXiv230110312A
- Keywords:
-
- Mathematics - Combinatorics;
- Computer Science - Discrete Mathematics;
- 15A06;
- 05C50;
- 05C63
- E-Print:
- 7 pages