Solving PDEs with Unmeasurable Source Terms Using Coupled Physics-Informed Neural Network with Recurrent Prediction for Soft Sensors
Abstract
Partial differential equations (PDEs) are a model candidate for soft sensors in industrial processes with spatiotemporal dependence. Although physics-informed neural networks (PINNs) are a promising machine learning method for solving PDEs, they are infeasible for the nonhomogeneous PDEs with unmeasurable source terms. To this end, a coupled PINN (CPINN) with a recurrent prediction (RP) learning strategy (CPINN- RP) is proposed. First, CPINN composed of NetU and NetG is proposed. NetU is for approximating PDEs solutions and NetG is for regularizing the training of NetU. The two networks are integrated into a data-physics-hybrid loss function. Then, we theoretically prove that the proposed CPINN has a satisfying approximation capability for solutions to nonhomogeneous PDEs with unmeasurable source terms. Besides the theoretical aspects, we propose a hierarchical training strategy to optimize and couple NetU and NetG. Secondly, NetU-RP is proposed for compensating information loss in data sampling to improve the prediction performance, in which RP is the recurrently delayed outputs of well-trained CPINN and hard sensors. Finally, the artificial and practical datasets are used to verify the feasibility and effectiveness of CPINN-RP for soft sensors.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2023
- DOI:
- arXiv:
- arXiv:2301.08618
- Bibcode:
- 2023arXiv230108618W
- Keywords:
-
- Computer Science - Machine Learning;
- Mathematics - Numerical Analysis