Mott Quantum Critical Points at Finite Doping
Abstract
We demonstrate that a finite-doping quantum critical point (QCP) naturally descends from the existence of a first-order Mott transition in the phase diagram of a strongly correlated material. In a prototypical case of a first-order Mott transition the surface associated with the equation of state for the homogeneous system is "folded" so that in a range of parameters stable metallic and insulating phases exist and are connected by an unstable metallic branch. Here we show that tuning the chemical potential, the zero-temperature equation of state gradually unfolds. Under general conditions, we find that the Mott transition evolves into a first-order transition between two metals, associated with a phase separation region ending in the finite-doping QCP. This scenario is here demonstrated solving a minimal multiorbital Hubbard model relevant for the iron-based superconductors, but its origin—the splitting of the atomic ground state multiplet by a small energy scale, here Hund's coupling—is much more general. A strong analogy with cuprate superconductors is traced.
- Publication:
-
Physical Review Letters
- Pub Date:
- February 2023
- DOI:
- 10.1103/PhysRevLett.130.066401
- arXiv:
- arXiv:2203.02451
- Bibcode:
- 2023PhRvL.130f6401C
- Keywords:
-
- Condensed Matter - Strongly Correlated Electrons;
- Condensed Matter - Materials Science;
- Condensed Matter - Superconductivity
- E-Print:
- 7 pages, 3 figures, supplementary information