The case for a minute-long merger-driven gamma-ray burst from fast-cooling synchrotron emission
Abstract
For decades, gamma-ray bursts (GRBs) have been broadly divided into long- and short-duration bursts, lasting more or less than 2 s, respectively. However, this dichotomy does not perfectly map to the two progenitor channels that are known to produce GRBs: mergers of compact objects (merger GRBs) or the collapse of massive stars (collapsar GRBs). In particular, the merger GRB population may also include bursts with a short, hard <2 s spike and subsequent longer, softer extended emission. The recent discovery of a kilonova—the radioactive glow of heavy elements made in neutron star mergers—in the 50-s-duration GRB 211211A further demonstrates that mergers can drive long, complex GRBs that mimic the collapsar population. Here we present a detailed temporal and spectral analysis of the high-energy emission of GRB 211211A. We demonstrate that the emission has a purely synchrotron origin, with both the peak and cooling frequencies moving through the γ-ray band down to X-rays, and that the rapidly evolving spectrum drives the extended emission signature at late times. The identification of such spectral evolution in a merger GRB opens avenues to diagnostics of the progenitor type.
- Publication:
-
Nature Astronomy
- Pub Date:
- January 2023
- DOI:
- arXiv:
- arXiv:2205.05008
- Bibcode:
- 2023NatAs...7...67G
- Keywords:
-
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- Author's final submitted version. 6 figures, 5 tables. The Supplementary Information .tex file is included