Origin of multiwavelength emission from flaring high redshift blazar PKS 0537-286
Abstract
The high redhsift blazars powered by supermassive black holes with masses exceeding 109 M⊙ have the highest jet power and luminosity and are important probes to test the physics of relativistic jets at the early epochs of the Universe. We present a multifrequency spectral and temporal study of high redshift blazar PKS 0537-286 by analysing data from Fermi-LAT, NuSTAR Swift XRT, and UVOT. Although the time averaged γ-ray spectrum of the source is relatively soft (indicating the high-energy emission peak is below the GeV range), several prominent flares were observed when the spectrum hardened and the luminosity increased above 1049 erg s-1. The X-ray emission of the source varies in different observations and is characterized by a hard spectrum ≤1.38 with a luminosity of >1047 erg s-1. The broad-band spectral energy distribution in the quiescent and flaring periods was modelled within a one-zone leptonic scenario assuming different locations of the emission region and considering both internal (synchrotron radiation) and external (from the disc, broad-line region, and dusty torus) photon fields for the inverse Compton scattering. The modelling shows that the most optimistic scenario, from the energy requirement point of view, is when the jet energy dissipation occurs within the broad-line region. The comparison of the model parameters obtained for the quiescent and flaring periods suggests that the flaring activities are most likely caused by the hardening of the emitting electron spectral index and shifting of the cut-off energy to higher values.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- May 2023
- DOI:
- arXiv:
- arXiv:2302.07682
- Bibcode:
- 2023MNRAS.521.1013S
- Keywords:
-
- galaxies: active;
- galaxies: jets;
- quasars: individual: PKS 0537-286;
- gamma-rays: galaxies;
- Astrophysics - High Energy Astrophysical Phenomena;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- Accepted for publication in MNRAS