The rebrightening of a ROSAT-selected tidal disruption event: repeated weak partial disruption flares from a quiescent galaxy?
Abstract
The ROSAT-selected tidal disruption event (TDE) candidate RX J133157.6-324319.7 (J1331) was detected in 1993 as a bright [0.2-2 keV flux of (1.0 ± 0.1) × 10-12 erg s-1 cm-2], ultra-soft (kT = 0.11 ± 0.03 keV) X-ray flare from a quiescent galaxy (z = 0.051 89). During its fifth all-sky survey (eRASS5) in 2022, Spectrum-Roentgen-Gamma (SRG)/ eROSITA detected the repeated flaring of J1331, where it had rebrightened to an observed 0.2-2 keV flux of (6.0 ± 0.7) × 10-13 erg s-1 cm-2, with spectral properties (kT = 0.115 ± 0.007 keV) consistent with the ROSAT-observed flare ~30 yr earlier. In this work, we report on X-ray, ultraviolet, optical, and radio observations of this system. During a pointed XMM observation ~17 d after the eRASS5 detection, J1331 was not detected in the 0.2-2 keV band, constraining the 0.2-2 keV flux to have decayed by a factor of ≳40 over this period. Given the extremely low probability (~5 × 10-6) of observing two independent full TDEs from the same galaxy over a 30 yr period, we consider the variability seen in J1331 to be likely caused by two partial TDEs involving a star on an elliptical orbit around a black hole. J1331-like flares show faster rise and decay time-scales [$\mathcal {O}(\mathrm{d})$] compared to standard TDE candidates, with negligible ongoing accretion at late times post-disruption between outbursts.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- April 2023
- DOI:
- arXiv:
- arXiv:2301.05501
- Bibcode:
- 2023MNRAS.520.3549M
- Keywords:
-
- accretion;
- accretion discs;
- black hole physics;
- transients: tidal disruption events;
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- 12 pages, 11 figures. MNRAS accepted