B2-Net: an artificial intelligence powered machine learning framework for the classification of pneumonia in chest x-ray images
Abstract
A chest x-ray radiograph is still the global standard for diagnosing pneumonia and helps distinguish between bacterial and viral pneumonia. Despite several studies, radiologists and physicians still have trouble correctly diagnosing and classifying pneumonia without false negatives. Modern mathematical modeling and artificial intelligence could help to reduce false-negative rates and improve diagnostic accuracy. This research aims to create a novel and efficient multiclass machine learning framework for analyzing and classifying chest x-ray images on a graphics processing unit (GPU). Researchers initially applied a geometric augmentation using a positional transformation function to the original dataset to enhance the sample size and aid future transfer learning. Models with the best accuracy, area under the receiver operating characteristics (AUROC), F1 score, precision, recall, and specificity are chosen from a pool of nine state-of-the-art neural network models. The best-performing models are then retrained using an ensemble technique using depth-wise convolutions, demonstrating significant improvements over the baseline models employed in this research. With a remarkable 97.69% accuracy, 100% recall, and 0.9977 AUROC scores, the proposed Bek-Bas network (B2-Net) model can differentiate between normal, bacterial, and viral pneumonia in chest x-ray images. A superior model is retrained using the chosen dense convolutional network-160, residual network-121, and visual geometry group network-16 ensemble models. The diagnostic accuracy of the x-ray classification unit is enhanced by the newly designed multiclass network, the B2-Net model. The developed GPU-based framework has been examined and tested to the highest clinical standards. After extensive clinical testing, the final B2-Net model is implemented on an NVIDIA Jetson Nano GPU computer. Healthcare facilities have confirmed the B2-Net is the most effective framework for identifying bacterial and viral pneumonia in chest x-rays.
- Publication:
-
Machine Learning: Science and Technology
- Pub Date:
- March 2023
- DOI:
- 10.1088/2632-2153/acc30f
- Bibcode:
- 2023MLS&T...4a5036A
- Keywords:
-
- artificial intelligence;
- depth wise convolution;
- data augmentation;
- ensemble learning;
- machine learning;
- pneumonia