The critical 2d Stochastic Heat Flow
Abstract
We consider directed polymers in random environment in the critical dimension $$d = 2$$ d = 2 , focusing on the intermediate disorder regime when the model undergoes a phase transition. We prove that, at criticality, the diffusively rescaled random field of partition functions has a unique scaling limit: a universal process of random measures on $${\mathbb {R}}^2$$ R 2 with logarithmic correlations, which we call the Critical 2d Stochastic Heat Flow. It is the natural candidate for the long sought solution of the critical 2d Stochastic Heat Equation with multiplicative space-time white noise.
- Publication:
-
Inventiones Mathematicae
- Pub Date:
- July 2023
- DOI:
- 10.1007/s00222-023-01184-7
- arXiv:
- arXiv:2109.03766
- Bibcode:
- 2023InMat.233..325C
- Keywords:
-
- Mathematics - Probability;
- Mathematical Physics;
- Primary: 82B44;
- Secondary: 35R60;
- 60H15;
- 82D60
- E-Print:
- Minor revisions. To appear in Inventiones mathematicae