Fermi equation of state with finite temperature corrections in quantum space-times approach: Snyder model vs GUP case
Abstract
We investigate the impact of the deformed phase space associated with the quantum Snyder space on microphysical systems. The general Fermi-Dirac equation of state and specific corrections to it are derived. We put emphasis on non-relativistic degenerate Fermi gas as well as on the temperature-finite corrections to it. Considering the most general one-parameter family of deformed phase spaces associated with the Snyder model allows us to study whether the modifications arising in physical effects depend on the choice of realization. It turns out that we can distinguish three different cases with radically different physical consequences.
- Publication:
-
Classical and Quantum Gravity
- Pub Date:
- October 2023
- DOI:
- 10.1088/1361-6382/acf435
- arXiv:
- arXiv:2304.08215
- Bibcode:
- 2023CQGra..40s5021P
- Keywords:
-
- non-commutative geometry;
- Snyder model;
- generalized uncertainty principle;
- equation of state;
- stars;
- General Relativity and Quantum Cosmology;
- High Energy Physics - Theory;
- Mathematical Physics
- E-Print:
- 15 pages