A Machine-learning Approach to Predict Missing Flux Densities in Multiband Galaxy Surveys
Abstract
We present a new method based on information theory to find the optimal number of bands required to measure the physical properties of galaxies with desired accuracy. As a proof of concept, using the recently updated COSMOS catalog (COSMOS2020), we identify the most relevant wave bands for measuring the physical properties of galaxies in a Hawaii Two-0- (H20) and UVISTA-like survey for a sample of i < 25 AB mag galaxies. We find that with the available i-band fluxes, r, u, IRAC/ch2, and z bands provide most of the information regarding the redshift with importance decreasing from r band to z band. We also find that for the same sample, IRAC/ch2, Y, r, and u bands are the most relevant bands in stellar-mass measurements with decreasing order of importance. Investigating the intercorrelation between the bands, we train a model to predict UVISTA observations in near-IR from H20-like observations. We find that magnitudes in the YJH bands can be simulated/predicted with an accuracy of 1σ mag scatter ≲0.2 for galaxies brighter than 24 AB mag in near-IR bands. One should note that these conclusions depend on the selection criteria of the sample. For any new sample of galaxies with a different selection, these results should be remeasured. Our results suggest that in the presence of a limited number of bands, a machine-learning model trained over the population of observed galaxies with extensive spectral coverage outperforms template fitting. Such a machine-learning model maximally comprises the information acquired over available extensive surveys and breaks degeneracies in the parameter space of template fitting inevitable in the presence of a few bands.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- January 2023
- DOI:
- arXiv:
- arXiv:2208.14781
- Bibcode:
- 2023ApJ...942...91C
- Keywords:
-
- Astronomy data analysis;
- Astronomy data visualization;
- Galaxy evolution;
- 1858;
- 1968;
- 594;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- 15 pages, 14 figures, accepted for publication in ApJ