A Massive Hot Jupiter Orbiting a Metal-rich Early M Star Discovered in the TESS Full-frame Images
Abstract
Observations and statistical studies have shown that giant planets are rare around M dwarfs compared with Sun-like stars. The formation mechanism of these extreme systems has remained under debate for decades. With the help of the TESS mission and ground-based follow-up observations, we report the discovery of TOI-4201b, the most massive and densest hot Jupiter around an M dwarf known so far with a radius of 1.22 ± 0.04 R J and a mass of 2.48 ± 0.09 M J, about 5 times heavier than most other giant planets around M dwarfs. It also has the highest planet-to-star mass ratio (q ~ 4 × 10-3) among such systems. The host star is an early M dwarf with a mass of 0.61 ± 0.02 M ⊙ and a radius of 0.63 ± 0.02 R ⊙. It has significant supersolar iron abundance ([Fe/H] = 0.52 ± 0.08 dex). However, interior structure modeling suggests that its planet TOI-4201b is metal-poor, which challenges the classical core-accretion correlation of stellar-planet metallicity, unless the planet is inflated by additional energy sources. Building on the detection of this planet, we compare the stellar metallicity distribution of four planetary groups: hot/warm Jupiters around G/M dwarfs. We find that hot/warm Jupiters show a similar metallicity dependence around G-type stars. For M-dwarf host stars, the occurrence of hot Jupiters shows a much stronger correlation with iron abundance, while warm Jupiters display a weaker preference, indicating possible different formation histories.
- Publication:
-
The Astronomical Journal
- Pub Date:
- October 2023
- DOI:
- arXiv:
- arXiv:2307.07329
- Bibcode:
- 2023AJ....166..165G
- Keywords:
-
- M dwarf stars;
- Radial velocity;
- Photometry;
- M stars;
- Extrasolar gaseous planets;
- 982;
- 1332;
- 1234;
- 985;
- 2172;
- Astrophysics - Earth and Planetary Astrophysics;
- Astrophysics - Solar and Stellar Astrophysics
- E-Print:
- 24 pages, 14 figures, 4 tables, accepted to AJ