TOI-1136 is a Young, Coplanar, Aligned Planetary System in a Pristine Resonant Chain
Abstract
Convergent disk migration has long been suspected to be responsible for forming planetary systems with a chain of mean-motion resonances (MMRs). Dynamical evolution over time could disrupt the delicate resonant configuration. We present TOI-1136, a 700 ± 150 Myr old G star hosting at least six transiting planets between ~2 and 5 R ⊕. The orbital period ratios deviate from exact commensurability by only 10-4, smaller than the ~10-2 deviations seen in typical Kepler near-resonant systems. A transit-timing analysis measured the masses of the planets (3-8M ⊕) and demonstrated that the planets in TOI-1136 are in true resonances with librating resonant angles. Based on a Rossiter-McLaughlin measurement of planet d, the star's rotation appears to be aligned with the planetary orbital planes. The well-aligned planetary system and the lack of a detected binary companion together suggest that TOI-1136's resonant chain formed in an isolated, quiescent disk with no stellar flyby, disk warp, or significant axial asymmetry. With period ratios near 3:2, 2:1, 3:2, 7:5, and 3:2, TOI-1136 is the first known resonant chain involving a second-order MMR (7:5) between two first-order MMRs. The formation of the delicate 7:5 resonance places strong constraints on the system's migration history. Short-scale (starting from ~0.1 au) Type-I migration with an inner disk edge is most consistent with the formation of TOI-1136. A low disk surface density (Σ1 au ≲ 103g cm-2; lower than the minimum-mass solar nebula) and the resultant slower migration rate likely facilitated the formation of the 7:5 second-order MMR.
- Publication:
-
The Astronomical Journal
- Pub Date:
- February 2023
- DOI:
- arXiv:
- arXiv:2210.09283
- Bibcode:
- 2023AJ....165...33D
- Keywords:
-
- Exoplanet dynamics;
- Exoplanet evolution;
- Exoplanet migration;
- Exoplanet formation;
- 490;
- 491;
- 2205;
- 492;
- Astrophysics - Earth and Planetary Astrophysics
- E-Print:
- 48 pages, 23 figures, 8 tables. Accepted to AAS journals. Comments welcome!