Survey of Orion Disks with ALMA (SODA). II. UV-driven disk mass loss in L1641 and L1647
Abstract
Context. External far-ultraviolet (FUV) irradiation of protoplanetary disks has an important impact on their evolution and ability to form planets. However, nearby (< 300 pc) star-forming regions lack sufficiently massive young stars, while the Trapezium cluster and NGC 2024 have complicated star-formation histories and their O-type stars' intense radiation fields (> 104 G0) destroy disks too quickly to study this process in detail.
Aims: We study disk mass loss driven by intermediate (10 − 1000 G0) FUV radiation fields in L1641 and L1647, where it is driven by more common A0- and B-type stars.
Methods: Using the large (N = 873) sample size offered by the Survey of Orion Disks with ALMA (SODA), we searched for trends in the median disk dust mass with FUV field strength across the region as a whole and in two separate regions containing a large number of irradiated disks.
Results: For radiation fields between 1 − 100 G0, the median disk mass in the most irradiated disks drops by a factor ∼2 over the lifetime of the region, while the 95th percentile of disk masses drops by a factor 4 over this range. This effect is present in multiple populations of stars, and localized in space, to within 2 pc of ionizing stars. We fitted an empirical irradiation - disk mass relation for the first time: Mdust,median = −1.3−0.13+0.14 log10(FFUV/G0) + 5.2−0.19+0.18.
Conclusions: This work demonstrates that even intermediate FUV radiation fields have a significant impact on the evolution of protoplanetary disks.
- Publication:
-
Astronomy and Astrophysics
- Pub Date:
- May 2023
- DOI:
- arXiv:
- arXiv:2304.05777
- Bibcode:
- 2023A&A...673L...2V
- Keywords:
-
- protoplanetary disks;
- Astrophysics - Earth and Planetary Astrophysics;
- Astrophysics - Astrophysics of Galaxies;
- Astrophysics - Solar and Stellar Astrophysics
- E-Print:
- Accepted to A&