Human-Robotic Cooperative Space Exploration
Abstract
Since the beginning of space exploration, outer space has fascinated, captivated and intrigued people's mind. The launch of the first artificial satellite—Sputnik—in 1957 by the Soviet Union, and the first man on the Moon in 1969 represent two significant missions in the space exploration history. In 1972, Apollo 17 marked the last human program on the lunar surface. Nevertheless, several robotic spacecrafts traveled to the Moon such as the Soviet Luna 24 in 1976 or more recently China's Chang'e 4 in 2019 which touched down on its far side, the first time for a space vehicle. The international space community is currently assessing a return to the Moon in 2024 and even beyond in the coming decades, toward the Red Planet, Mars. Robots and rovers, for instance, Curiosity, Philae, Rosetta or Perseverance, will continue to play a major role in space exploration by paving the way for future long-duration missions on celestial bodies. Landing humans on the Moon, Mars, or on other celestial bodies, needs robotics because there are significant challenges to overcome from technological and physiological perspectives. Therefore, the support of machines and artificial intelligence is essential for developing future deep space programs as well as to reach a sustainable space exploration. One can imagine future circumstances where robots and humans are collaborating together on the Moon's surface or on celestial bodies to undertake scientific research, to extract and to analyze space resources for a possible in situ utilization, as well as to build sites for human habitation and work. Indeed, different situations can be considered: (a) a robot, located on a celestial body, operated by a human on Earth or aboard a space station; (b) the in situ operation of a robot by an astronaut; (c) the interaction between a robot in outer space, manipulated from Earth and an astronaut; (d) the interaction between a robot operated from space and an astronaut; (e) the interaction between a robot with an artificial intelligence component and an astronaut; (f) the interaction between two robots in the case of on-orbit servicing. The principles of free exploration and cooperation are two core concepts in the international space legal framework. Hence, it is necessary to analyse the provisions on the five United Nations space treaties in the context of "human-robotic" cooperation. In addition, the development of a Code of Conduct for space exploration, involving humans and robots, might be needed in order to clearly identify the missions using robotic systems (e.g., mission's purpose, area of operations) and to foresee scenarios of responsibility and liability in case of damage. Lastly, a review of the dispute settlement mechanisms is particularly relevant as international claims related to human-robot activities will inevitably occur given the fact that their collaboration will increase as more missions are being planned on celestial bodies.
- Publication:
-
Oxford Research Encyclopedia of Planetary Science
- Pub Date:
- August 2022
- DOI:
- Bibcode:
- 2022oeps.book..219M
- Keywords:
-
- space exploration;
- robotic;
- artificial intelligence;
- international cooperation;
- space law