Critical points of arbitrary energy for the Trudinger-Moser functional in planar domains
Abstract
Given a smoothly bounded non-contractible domain $\Omega\subset \mathbb{R}^2$, we prove the existence of positive critical points of the Trudinger-Moser embedding for arbitrary Dirichlet energies. This is done via degree theory, sharp compactness estimates and a topological argument relying on the Poincaré-Hopf theorem.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2022
- DOI:
- arXiv:
- arXiv:2212.10303
- Bibcode:
- 2022arXiv221210303M
- Keywords:
-
- Mathematics - Analysis of PDEs;
- Mathematics - Functional Analysis;
- 35A16;
- 35J61
- E-Print:
- doi:10.1016/j.aim.2024.109548