Distribution of the k-regular partition function modulo composite integers M
Abstract
Let $b_k(n)$ denote the $k-$regular partitons of a natural number $n$. In this paper, we study the behavior of $b_k(n)$ modulo composite integers $M$ which are coprime to $6$. Specially, we prove that for arbitrary $k-$regular partiton function $b_k(n)$ and integer $M$ coprime to $6$, there are infinitely many Ramanujan-type congruences of $b_k(n)$ modulo $M$.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2022
- DOI:
- arXiv:
- arXiv:2212.05013
- Bibcode:
- 2022arXiv221205013L
- Keywords:
-
- Mathematics - Number Theory