On the chromatic numbers of 3-dimensional slices
Abstract
We prove that for an arbitrary $\varepsilon > 0$ holds \[ \chi (\mathbb{R}^3 \times [0,\varepsilon]^6) \geq 10, \] where $\chi(M)$ stands for the chromatic number of an (infinite) graph with the vertex set $M$ and the edge set consists of pairs of monochromatic points at the distance 1 apart.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2022
- DOI:
- arXiv:
- arXiv:2208.02230
- Bibcode:
- 2022arXiv220802230C
- Keywords:
-
- Mathematics - Combinatorics;
- Mathematics - Metric Geometry
- E-Print:
- Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI)518(2022), 94-113