Induced subgraphs and path decompositions
Abstract
A graph $H$ is an induced subgraph of a graph $G$ if a graph isomorphic to $H$ can be obtained from $G$ by deleting vertices. Recently, there has been significant interest in understanding the unavoidable induced subgraphs for graphs of large treewidth. Motivated by this work, we consider the analogous problem for pathwidth: what are the unavoidable induced subgraphs for graphs of large pathwidth? While resolving this question in the general setting looks challenging, we prove various results for sparse graphs. In particular, we show that every graph with bounded maximum degree and sufficiently large pathwidth contains a subdivision of a large complete binary tree or the line graph of a subdivision of a large complete binary tree as an induced subgraph. Similarly, we show that every graph excluding a fixed minor and with sufficiently large pathwidth contains a subdivision of a large complete binary tree or the line graph of a subdivision of a large complete binary tree as an induced subgraph. Finally, we present a characterisation for when a hereditary class defined by a finite set of forbidden induced subgraphs has bounded pathwidth.
 Publication:

arXiv eprints
 Pub Date:
 June 2022
 DOI:
 10.48550/arXiv.2206.15054
 arXiv:
 arXiv:2206.15054
 Bibcode:
 2022arXiv220615054H
 Keywords:

 Mathematics  Combinatorics