Asymptotic stability near the soliton for quartic Klein-Gordon in 1D
Abstract
We consider the nonlinear focusing Klein-Gordon equation in $1 + 1$ dimensions and the global space-time dynamics of solutions near the unstable soliton. Our main result is a proof of optimal decay, and local decay, for even perturbations of the static soliton originating from well-prepared initial data belonging to a subset of the stable manifold constructed in Bates-Jones (Dynamics reported, 1989) and Kowalczyk-Martel-Muñoz (J. Eur. Math. Soc., 2021). Our results complement those of Kowalczyk-Martel-Muñoz (J. Eur. Math. Soc., 2021) and confirm numerical results of Bizon-Chmaj-Szpak (J. Math. Phys., 2011) when considering nonlinearities $u^p$ with $p \geq 4$. In particular, we provide new information both local and global in space about asymptotically stable perturbations of the soliton under localization assumptions on the data.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2022
- DOI:
- arXiv:
- arXiv:2206.15008
- Bibcode:
- 2022arXiv220615008K
- Keywords:
-
- Mathematics - Analysis of PDEs;
- 43A32;
- 42B37;
- 35P25;
- 35Q55
- E-Print:
- 35 pages, no figures