Local Hölder regularity for nonlocal parabolic $p$-Laplace equations
Abstract
We prove local Hölder regularity for a nonlocal parabolic equations of the form \begin{align*} \partial_t u + \text{P.V.}\int_{\mathbb{R}^N} \frac{|u(x,t)-u(y,t)|^{p-2}(u(x,t)-u(y,t))}{|x-y|^{N+sp}}\,dy=0, \end{align*} for $p\in (1,\infty)$ and $s \in (0,1)$.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2022
- DOI:
- 10.48550/arXiv.2205.09695
- arXiv:
- arXiv:2205.09695
- Bibcode:
- 2022arXiv220509695A
- Keywords:
-
- Mathematics - Analysis of PDEs;
- 35K92;
- 35B65;
- 35K51;
- 35A01;
- 35A15;
- 35R11
- E-Print:
- Typos corrected and covering argument has been updated