Equivariant K-theory of the space of partial flags
Abstract
We use Drinfeld style generators and relations to define an algebra $\mathfrak{U}_n$ which is a "$q=0$" version of the affine quantum group of $\mathfrak{gl}_n.$ We then use the convolution product on the equivariant $K$-theory of spaces of pairs of partial flags in a $d$-dimensional vector space $V$ to define affine zero-Schur algebras ${\mathbb S}_0^{\operatorname{aff}}(n,d)$ and to prove that for every $d$ there exists a surjective homomorphism from $\mathfrak{U}_n$ to ${\mathbb S}_0^{\operatorname{aff}}(n,d).$
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2022
- DOI:
- arXiv:
- arXiv:2205.05184
- Bibcode:
- 2022arXiv220505184A
- Keywords:
-
- Mathematics - Representation Theory;
- Mathematics - Combinatorics;
- Mathematics - Quantum Algebra;
- 20G42;
- 20G43;
- 17B37
- E-Print:
- 51 pages