Non-spectrality of Moran measures with consecutive digits
Abstract
Let $\rho=(\frac{p}{q})^{\frac{1}{r}}<1$ for some $p,q,r\in\mathbb{N}$ with $(p,q)=1$ and $\mathcal{D}_{n}=\{0,1,\cdot\cdot\cdot,N_{n}-1\}$, where $N_{n}$ is prime for all $n\in\mathbb{N}$, and denote $M=\sup\{N_{n}:n=1,2,3,\ldots\}<\infty$. The associated Borel probability measure $$\mu_{\rho,\{\mathcal{D}_{n}\}}=\delta_{\rho\mathcal{D}_{1}}*\delta_{\rho^{2}\mathcal{D}_{2}}*\delta_{\rho^{3}\mathcal{D}_{3}}*\cdots$$ is called a Moran measure. Recently, Deng and Li proved that $\mu_{\rho,\{\mathcal{D}_{n}\}}$ is a spectral measure if and only if $\frac{1}{N_{n}\rho}$ is an integer for all $n\geq 2$. In this paper, we prove that if $L^{2}(\mu_{\rho, \{\mathcal{D}_{n}\}})$ contains an infinite orthogonal exponential set, then there exist infinite positive integers $n_{l}$ such that $(q,N_{n_{l}})>1$. Contrastly, if $(q,N_{n})=1$ and $(p,N_{n})=1$ for all $n\in\mathbb{N}$, then there are at most $M$ mutually orthogonal exponential functions in $L^{2}(\mu_{\rho, \{\mathcal{D}_{n}\}})$ and $M$ is the best possible. If $(q,N_{n})=1$ and $(p,N_{n})>1$ for all $n\in\mathbb{N}$, then there are any number of orthogonal exponential functions in $L^{2}(\mu_{\rho, \{\mathcal{D}_{n}\}})$.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2022
- DOI:
- arXiv:
- arXiv:2205.03541
- Bibcode:
- 2022arXiv220503541Z
- Keywords:
-
- Mathematics - Functional Analysis;
- Primary 28A80;
- Secondary 42C05;
- 46C05