On the isomorphism class of $q$-Gaussian C$^\ast$-algebras for infinite variables
Abstract
For a real Hilbert space $H_{\mathbb{R}}$ and $-1 < q < 1$ Bozejko and Speicher introduced the C$^\ast$-algebra $A_q(H_{\mathbb{R}})$ and von Neumann algebra $M_q(H_{\mathbb{R}})$ of $q$-Gaussian variables. We prove that if $\dim(H_{\mathbb{R}}) = \infty$ and $-1 < q < 1, q \not = 0$ then $M_q(H_{\mathbb{R}})$ does not have the Akemann-Ostrand property with respect to $A_q(H_{\mathbb{R}})$. It follows that $A_q(H_{\mathbb{R}})$ is not isomorphic to $A_0(H_{\mathbb{R}})$. This gives an answer to the C$^\ast$-algebraic part of Question 1.1 and Question 1.2 in [NeZe18].
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2022
- DOI:
- arXiv:
- arXiv:2202.13640
- Bibcode:
- 2022arXiv220213640B
- Keywords:
-
- Mathematics - Operator Algebras
- E-Print:
- Proceedings of the AMS, to appear