PISA: A Binary-Weight Processing-In-Sensor Accelerator for Edge Image Processing
Abstract
This work proposes a Processing-In-Sensor Accelerator, namely PISA, as a flexible, energy-efficient, and high-performance solution for real-time and smart image processing in AI devices. PISA intrinsically implements a coarse-grained convolution operation in Binarized-Weight Neural Networks (BWNNs) leveraging a novel compute-pixel with non-volatile weight storage at the sensor side. This remarkably reduces the power consumption of data conversion and transmission to an off-chip processor. The design is completed with a bit-wise near-sensor processing-in-DRAM computing unit to process the remaining network layers. Once the object is detected, PISA switches to typical sensing mode to capture the image for a fine-grained convolution using only the near-sensor processing unit. Our circuit-to-application co-simulation results on a BWNN acceleration demonstrate acceptable accuracy on various image datasets in coarse-grained evaluation compared to baseline BWNN models, while PISA achieves a frame rate of 1000 and efficiency of ~1.74 TOp/s/W. Lastly, PISA substantially reduces data conversion and transmission energy by ~84% compared to a baseline CPU-sensor design.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2022
- DOI:
- 10.48550/arXiv.2202.09035
- arXiv:
- arXiv:2202.09035
- Bibcode:
- 2022arXiv220209035A
- Keywords:
-
- Computer Science - Hardware Architecture
- E-Print:
- 11 pages, 16 figures