Optimal range of Haar martingale transforms and its applications
Abstract
Let $(\mathcal{F}_n)_{n\ge 0}$ be the standard dyadic filtration on $[0,1]$. Let $\mathbb{E}_{\mathcal{F}_n}$ be the conditional expectation from $ L_1=L_1[0,1]$ onto $\mathcal{F} _n$, $n\ge 0$, and let $\mathbb{E}_{\mathcal{F} _{-1}} =0$. We present the sharp estimate for the distribution function of the martingale transform $T$ defined by \begin{align*} Tf=\sum_{m=0}^\infty \left( \mathbb{E}_{\mathcal{F}_{2m}} f-\mathbb{E}_{\mathcal{F}_{2m-1}}f \right), ~f\in L_1, \end{align*} in terms of the classical Calderón operator. As an application, for a given symmetric function space $E$ on $[0,1]$, we identify the symmetric space $\mathcal{S}_E$, the optimal Banach symmetric range of martingale transforms/Haar basis projections acting on $E$.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2022
- DOI:
- arXiv:
- arXiv:2202.07154
- Bibcode:
- 2022arXiv220207154A
- Keywords:
-
- Mathematics - Probability;
- Mathematics - Functional Analysis