Significant Low-dimensional Spectral-temporal Features for Seizure Detection
Abstract
Seizure onset detection in electroencephalography (EEG) signals is a challenging task due to the non-stereotyped seizure activities as well as their stochastic and non-stationary characteristics in nature. Joint spectral-temporal features are believed to contain sufficient and powerful feature information for absence seizure detection. However, the resulting high-dimensional features involve redundant information and require heavy computational load. Here, we discover significant low-dimensional spectral-temporal features in terms of mean-standard deviation of wavelet transform coefficient (MS-WTC), based on which a novel absence seizure detection framework is developed. The EEG signals are transformed into the spectral-temporal domain, with their low-dimensional features fed into a convolutional neural network. Superior detection performance is achieved on the widely-used benchmark dataset as well as a clinical dataset from the Chinese 301 Hospital. For the former, seven classification tasks were evaluated with the accuracy from 99.8% to 100.0%, while for the latter, the method achieved a mean accuracy of 94.7%, overwhelming other methods with low-dimensional temporal and spectral features. Experimental results on two seizure datasets demonstrate reliability, efficiency and stability of our proposed MS-WTC method, validating the significance of the extracted low-dimensional spectral-temporal features.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2022
- DOI:
- 10.48550/arXiv.2202.06284
- arXiv:
- arXiv:2202.06284
- Bibcode:
- 2022arXiv220206284Y
- Keywords:
-
- Electrical Engineering and Systems Science - Signal Processing