Stellar masses of clumps in gas-rich, turbulent disc galaxies
Abstract
In this paper, we use Hubble Space Telescope/WFC3 observations of six galaxies from the DYnamics of Newly Assembled Massive Object (DYNAMO) survey, combined with stellar population modelling of the SED, to determine the stellar masses of DYNAMO clumps. The DYNAMO sample has been shown to have properties similar to z ≈ 1.5 turbulent, clumpy discs. DYNAMO sample clump masses offer a useful comparison for studies of z > 1 in that the galaxies have the same properties, yet the observational biases are significantly different. Using DYNAMO, we can more easily probe rest-frame near-IR wavelengths and also probe finer spatial scales. We find that the stellar mass of DYNAMO clumps is typically 107-108M⊙. We employ a technique that makes non-parametric corrections in removal of light from nearby clumps, and carries out a locally determined disc subtraction. The process of disc subtraction is the dominant effect, and can alter clump masses at the 0.3 dex level. Using these masses, we investigate the stellar mass function (MF) of clumps in DYNAMO galaxies. DYNAMO stellar MFs follow a declining power law with slope α ≈ -1.4, which is slightly shallower than, but similar to what is observed in z > 1 lensed galaxies. We compare DYNAMO clump masses to results of simulations. The masses and galactocentric position of clumps in DYNAMO galaxies are more similar to long-lived clumps in simulations. Similar to recent DYNAMO results on the stellar population gradients, these results are consistent with simulations that do not employ strong 'early' radiative feedback prescriptions.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- May 2022
- DOI:
- arXiv:
- arXiv:2203.05007
- Bibcode:
- 2022MNRAS.512.3079A
- Keywords:
-
- galaxies: evolution;
- galaxies: formation;
- galaxies: star formation;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- 22 pages, 15 figures, accepted by MNRAS