Self-consistent modelling of the Milky Way's nuclear stellar disc
Abstract
The nuclear stellar disc (NSD) is a flattened high-density stellar structure that dominates the gravitational field of the Milky Way at Galactocentric radius $30\, {\rm pc}\lesssim R\lesssim 300\, {\rm pc}$. We construct axisymmetric self-consistent equilibrium dynamical models of the NSD in which the distribution function is an analytic function of the action variables. We fit the models to the normalized kinematic distributions (line-of-sight velocities + VIRAC2 proper motions) of stars in the NSD survey of Fritz et al., taking the foreground contamination due to the Galactic Bar explicitly into account using an N-body model. The posterior marginalized probability distributions give a total mass of $M_{\rm NSD} = 10.5^{+1.1}_{-1.0} \times 10^8 \, \, \rm M_\odot$, roughly exponential radial and vertical scale lengths of $R_{\rm disc} = 88.6^{+9.2}_{-6.9} \, {\rm pc}$ and $H_{\rm disc}=28.4^{+5.5}_{-5.5} \, {\rm pc}$, respectively, and a velocity dispersion $\sigma \simeq 70\, {\rm km\, s^{-1}}$ that decreases with radius. We find that the assumption that the NSD is axisymmetric provides a good representation of the data. We quantify contamination from the Galactic Bar in the sample, which is substantial in most observed fields. Our models provide the full 6D (position + velocity) distribution function of the NSD, which can be used to generate predictions for future surveys. We make the models publicly available as part of the software package AGAMA.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- May 2022
- DOI:
- arXiv:
- arXiv:2111.12713
- Bibcode:
- 2022MNRAS.512.1857S
- Keywords:
-
- Galaxy: centre;
- Galaxy: kinematics and dynamics;
- Galaxy: structure;
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- Accepted for publication in MNRAS