A 2+1 + 1 quadruple star system containing the most eccentric, low-mass, short-period, eclipsing binary known
Abstract
We present an analysis of a newly discovered 2+1 + 1 quadruple system with TESS containing an unresolved eclipsing binary (EB) as part of TIC 121088960 and a close neighbour TIC 121088959. The EB consists of two very low-mass M dwarfs in a highly eccentric (e = 0.709) short-period (P = 3.043 58 d) orbit. Given the large pixel size of TESS and the small separation (3${_{.}^{\prime\prime}}$9) between TIC 121088959 and TIC 121088960 we used light centroid analysis of the difference image between in-eclipse and out-of-eclipse data to show that the EB likely resides in TIC 121088960, but contributes only ~10 per cent of its light. Radial velocity data were acquired with iSHELL at NASA's Infrared Facility and the Coudé spectrograph at the McDonald 2.7-m telescope. For both images, the measured RVs showed no variation over the 11 d observational baseline, and the RV difference between the two images was 8 ± 0.3 km s-1. The similar distances and proper motions of the two images indicate that TIC 121088959 and TIC 121088960 are a gravitationally bound pair. Gaia's large RUWE and astrometric_excess_noise parameters for TIC 121088960, further indicate that this image is the likely host of the unresolved EB and is itself a triple star. We carried out an SED analysis and calculated stellar masses for the four stars, all of which are in the M dwarf regime: 0.19 M⊙ and 0.14 M⊙ for the EB stars and 0.43 M⊙ and 0.39 M⊙ for the brighter visible stars, respectively. Lastly, numerical simulations show that the orbital period of the inner triple is likely the range 1-50 yr.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- February 2022
- DOI:
- arXiv:
- arXiv:2112.00028
- Bibcode:
- 2022MNRAS.510.2448H
- Keywords:
-
- binaries: close;
- binaries: eclipsing;
- binaries: general;
- stars: late-type;
- stars: low-mass;
- Astrophysics - Solar and Stellar Astrophysics;
- Astrophysics - Earth and Planetary Astrophysics
- E-Print:
- doi:10.1093/mnras/stab3507