Atomically dispersed Fe/Bi dual active sites single-atom nanozymes for cascade catalysis and peroxymonosulfate activation to degrade dyes
Abstract
Constructing single-atom nanozymes (SAzymes) with densely exposed and dispersed double metal-Nx catalytic sites for pollution remediation remains rare and challenging. Herein, we report a novel Fe-Bi bimetallic MOF-derived carbon supported Fe-N4 and Bi-N4 dual-site FeBi-NC SAzyme for cascade catalysis and peroxymonosulfate activation to degrade dye pollutants, which is synthesized from the Fe-doped Bi-MOF as a precursor. The formation of both Fe-N4 and Bi-N4 sites is demonstrated by XANES and EXAFS. The FeBi-NC SAzyme has high single atoms loadings of Fe (2.61 wt%) and Bi (8.01 wt%), and displays 5.9- and 9.8-fold oxidase mimicking activity enhancement relative to the Fe-NC and Bi-NC SAzymes, respectively. When integrated acetylcholinesterase (AChE) and FeBi-NC SAzyme, a cascade enzyme-nanozyme system is developed for selective and sensitive screening of AChE activity with a low detection limit of 1 × 10‑4 mU mL‑1. Both Fe-N4 and Bi-N4 in FeBi-NC display a strong binding energy and electron donating capability to promote peroxymonosulfate activation to generate highly active intermediates for rhodamine B degradation. 100% rhodamine B removal occurs within 5 min via FeBi-NC mediated activation of peroxymonosulfate. The DFT calculations reveal that high activity of FeBi-NC is due to the isolated Fe-N4 and Bi-N4 sites and their synergy.
- Publication:
-
Journal of Hazardous Materials
- Pub Date:
- January 2022
- DOI:
- 10.1016/j.jhazmat.2021.126929
- Bibcode:
- 2022JHzM..42226929C
- Keywords:
-
- Dual sites single-atom nanozymes;
- Oxidase mimicking;
- Cascade catalysis;
- Peroxymonosulfate activation;
- Rhodamine B