A Unified Spectroscopic and Photometric Model to Infer Surface Inhomogeneity: Application to Luhman 16B
Abstract
Extremely large telescopes (ELTs) provide an opportunity to observe surface inhomogeneities for ultracool objects including M dwarfs, brown dwarfs (BDs), and gas giant planets via Doppler imaging and spectrophotometry techniques. These inhomogeneities can be caused by star spots, clouds, and vortices. Star spots and associated stellar flares play a significant role in habitability, either stifling life or catalyzing abiogenesis depending on the emission frequency, magnitude, and orientation. Clouds and vortices may be the source of spectral and photometric variability observed at the L/T transition of BDs and are expected in gas giant exoplanets. We develop a versatile analytical framework to model and infer surface inhomogeneities that can be applied to both spectroscopic and photometric data. This model is validated against a slew of numerical simulations. Using archival spectroscopic and photometric data, we infer starspot parameters (location, size, and contrast) and generate global surface maps for Luhman 16B (an early T dwarf and one of our solar system's nearest neighbors at a distance of ≈2 pc). We confirm previous findings that Luhman 16B's atmosphere is inhomogeneous with time-varying features. In addition, we provide tentative evidence of longer timescale atmospheric structures such as dark equatorial and bright midlatitude to polar spots. These findings are discussed in the context of atmospheric circulation and dynamics for ultracool dwarfs. Our analytical model will be valuable in assessing the feasibility of using ELTs to study surface inhomogeneities of gas giant exoplanets and other ultracool objects.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- July 2022
- DOI:
- arXiv:
- arXiv:2206.01770
- Bibcode:
- 2022ApJ...933..163P
- Keywords:
-
- Doppler imaging;
- M dwarf stars;
- Brown dwarfs;
- Spectrophotometry;
- Exoplanet atmospheres;
- 400;
- 982;
- 185;
- 1556;
- 487;
- Astrophysics - Earth and Planetary Astrophysics;
- Astrophysics - Solar and Stellar Astrophysics
- E-Print:
- 23 pages, 10 figures, 1 table. Accepted for publication in The Astrophysical Journal