Testing Relative Fairness in Human Decisions With Machine Learning
Abstract
Fairness in decision-making has been a long-standing issue in our society. Compared to algorithmic fairness, fairness in human decisions is even more important since there are processes where humans make the final decisions and that machine learning models inherit bias from the human decisions they were trained on. However, the standard for fairness in human decisions are highly subjective and contextual. This leads to the difficulty for testing "absolute" fairness in human decisions. To bypass this issue, this work aims to test relative fairness in human decisions. That is, instead of defining what are "absolute" fair decisions, we check the relative fairness of one decision set against another. An example outcome can be: Decision Set A favors female over male more than Decision Set B. Such relative fairness has the following benefits: (1) it avoids the ambiguous and contradictory definition of "absolute" fair decisions; (2) it reveals the relative preference and bias between different human decisions; (3) if a reference set of decisions is provided, relative fairness of other decision sets against this reference set can reflect whether those decision sets are fair by the standard of that reference set. We define the relative fairness with statistical tests (null hypothesis and effect size tests) of the decision differences across each sensitive group. Furthermore, we show that a machine learning model trained on the human decisions can inherit the bias/preference and therefore can be utilized to estimate the relative fairness between two decision sets made on different data.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2021
- DOI:
- 10.48550/arXiv.2112.11279
- arXiv:
- arXiv:2112.11279
- Bibcode:
- 2021arXiv211211279Y
- Keywords:
-
- Computer Science - Machine Learning
- E-Print:
- Submitted to ICLR'24