Products of integers with few nonzero digits
Abstract
Let $s(n)$ be the number of nonzero bits in the binary digital expansion of the integer $n$. We study, for fixed $k,\ell,m$, the Diophantine system $$ s(ab)=k, \quad s(a)=\ell,\quad \mbox{and }\quad s(b)=m, $$ in odd integer variables $a,b$. When $k=2$ or $k=3$, we establish a bound on $ab$ in terms of $\ell$ and $m$. While such a bound does not exist in the case of $k=4$, we give an upper bound for $\min\{a,b\}$ in terms of $\ell$ and $m$.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2021
- DOI:
- 10.48550/arXiv.2112.03077
- arXiv:
- arXiv:2112.03077
- Bibcode:
- 2021arXiv211203077K
- Keywords:
-
- Mathematics - Number Theory;
- Mathematics - Combinatorics;
- 11A63;
- 11B83
- E-Print:
- 17 pages